Large-Scale Category Structure Aware Image Categorization
نویسندگان
چکیده
Most previous research on image categorization has focused on medium-scale data sets, while large-scale image categorization with millions of images from thousands of categories remains a challenge. With the emergence of structured large-scale dataset such as the ImageNet, rich information about the conceptual relationships between images, such as a tree hierarchy among various image categories, become available. As human cognition of complex visual world benefits from underlying semantic relationships between object classes, we believe a machine learning system can and should leverage such information as well for better performance. In this paper, we employ such semantic relatedness among image categories for large-scale image categorization. Specifically, a category hierarchy is utilized to properly define loss function and select common set of features for related categories. An efficient optimization method based on proximal approximation and accelerated parallel gradient method is introduced. Experimental results on a subset of ImageNet containing 1.2million images from 1000 categories demonstrate the effectiveness and promise of our proposed approach.
منابع مشابه
What Does Classifying More Than 10, 000 Image Categories Tell Us?
Image classification is a critical task for both humans and computers. One of the challenges lies in the large scale of the semantic space. In particular, humans can recognize tens of thousands of object classes and scenes. No computer vision algorithm today has been tested at this scale. This paper presents a study of large scale categorization including a series of challenging experiments on ...
متن کاملImage Categorization Using Scene-Context Scale Based on Random Forests
Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective scale of local context to classify an image pixel in a scene. This paper presents random forests based image categorization using the scene-context scale. The proposed method uses random forests, which are ensembles of...
متن کاملUnsupervised image categorization
Large image collections require efficient organization and visualization. This paper describes an approach to establish image categories automatically by unsupervised learning. The method works free of context and previous knowledge: in a first stage, features are formed automatically, then images are clustered to form categories. The human database designer has to decide only whether a categor...
متن کاملSceneNet: A Perceptual Ontology for Scene Understanding
Scene recognition systems which attempt to deal with a large number of scene categories currently lack proper knowledge about the perceptual ontology of scene categories and would enjoy significant advantage from a perceptually meaningful scene representation. In this work we perform a large-scale human study to create “SceneNet”, an online ontology database for scene understanding that organiz...
متن کاملOne-Shot Learning of Object Categories Using Dependent Gaussian Processes
Knowledge transfer from related object categories is a key concept to allow learning with few training examples. We present how to use dependent Gaussian processes for transferring knowledge from a related category in a non-parametric Bayesian way. Our method is able to select this category automatically using efficient model selection techniques. We show how to optionally incorporate semantic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011